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Summary

In this paper, we compare the performance of three iterative
methods for image restoration: the Richardson–Lucy
algorithm, the iterative constrained Tikhonov–Miller algo-
rithm (ICTM) and the Carrington algorithm. Both the ICTM
and the Carrington algorithm are based on an additive
Gaussian noise model, but differ in the way they incorporate
the non-negativity constraint. Under low light-level condi-
tions, this additive (Gaussian) noise model is a poor
description of the actual photon-limited image recording,
compared with that of a Poisson process. The Richardson–
Lucy algorithm is a maximum likelihood estimator for the
intensity of a Poisson process. We have studied various
methods for determining the regularization parameter of
the ICTM and the Carrington algorithm and propose a
(Gaussian) prefiltering to reduce the noise sensitivity of
the Richardson–Lucy algorithm. The results of these
algorithms are compared on spheres convolved with a point
spread function and distorted by Poisson noise. Our
simulations show that the Richardson–Lucy algorithm,
with Gaussian prefiltering, produces the best result in
most of the tests. Finally, we show an example of how
restoration methods can improve quantitative analysis: the
total amount of fluorescence inside a closed object is
measured in the vicinity of another object before and after
restoration.

1. Introduction

The analysis of the three-dimensional (3-D) structure of
tissue, cells and cellular constituents plays a major role in
biomedical research. Three-dimensional images, often
acquired with confocal fluorescence microscopes, are vital

to this analysis. However, the imaging properties of a
confocal microscope give rise to a blurring phenomenon
similar to the one in a conventional microscope, but with a
reduced range (van Resandt et al., 1985). The resulting
distortions hamper subsequent quantitative analysis.
Therefore, operations that invert the distortions of the
microscope improve this analysis.

This inversion in the presence of noise is known to be a
very difficult problem. In fact, the restoration of information
that is severely suppressed by this blurring is known to be
an ill-posed problem (Tikhonov & Arsenin, 1977). There-
fore, a priori knowledge about the noise and object will
regularize the restoration.

In previous work (van Kempen et al., 1996) the
performance of the iterative constrained Tikhonov–Miller
(ICTM) algorithm to restore diffraction-induced distortions
was compared with the Richardson–Lucy algorithm.
Quantitative texture measurements, based on the grey-
value distance transform, showed that the results improved
when applied to images after restoration. The results
showed that the performance of the Richardson–Lucy
algorithm, measured by the mean-square-error and I-
divergence criterion, was in most circumstances better
than the ICTM result.

The use of the ICTM restoration method was motivated
by the linear system model used to describe the imaging
properties of a confocal microscope. In this model, the
image is a convolution of the object function with the point
spread function of the microscope and distorted by additive
Gaussian noise. This image formation model breaks down
on images with a low signal-to-noise ratio, where the
additive noise model is a poor description of the actual
photon-limited image recording. Under these circum-
stances, the noise characteristics are better described by a
Poisson process, which motivates the use of restoration
methods optimized for Poisson noise distorted images.
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In this paper, we compare the Richardson–Lucy algo-
rithm, which is a maximum likelihood estimator for the
intensity of a Poisson process prior to distortion (Shepp &
Vardi, 1982), with the ICTM and the Carrington algorithm
(Carrington, 1990). Furthermore, we have tested different
methods for determining the regularization parameter of
both the ICTM and the Carrington algorithm. Previous
work (van Kempen et al., 1996) showed that a regulariza-
tion parameter inversely proportional to the signal-to-noise
ratio causes too much smoothing. Furthermore, we
examine a method to reduce the noise sensitivity that is
frequently observed with the Richardson–Lucy algorithm
(Snyder & Miller, 1991).

Finally, we show an example of how restoration methods
can improve quantitative analysis: the total amount of
fluorescence inside a closed object is measured in the
vicinity of another object before and after restoration.

A vast amount of literature is published on the
restoration of microscope images, using restoration
methods such as the Richardson–Lucy (Snyder et al.,
1993; Holmes et al., 1995), ICTM (van der Voort &
Strasters, 1995), the Carrington algorithm (Carrington,
1990; Carrington et al., 1995) and maximum a posteriori
algorithms (Joshi & Miller, 1993). Whereas these methods
have just come within reach in terms of computational
complexity, they have been shown to significantly improve
the (quantitative) analysis of microscope images (van der
Voort & Strasters, 1995). Owing to their nonlinear nature
and application of prior knowledge, these methods are
capable of partially restoring data from missing frequencies,
as induced by the ‘missing cone’ of the 3-D OTF of
incoherent light microscopes (Carrington, 1990; Shaw &
Rawlins, 1991; Holmes et al., 1995). Therefore, they
significantly reduce the diffraction-induced distortion found
in confocal and conventional 3-D images (Shaw & Rawlins,
1991; Holmes et al., 1995).

2. Image restoration

2.1. Image acquisition

The incoherent nature of emitted fluorescence light allows
us to model the image formation of the confocal fluores-
cence microscope as a convolution of the object function
f ðxÞ with the point spread function (PSF) of the microscope
hðxÞ, with x being a 3-D coordinate in the space X. The
image gðxÞ formed by an ideal noise-free confocal fluores-
cence microscope can thus be written as

gðxÞ ¼

�

X
hðx ¹ xÞ f ðxÞdx: ð1Þ

Owing to the photon nature of light and its effect on f ðxÞ,
gðxÞ is distorted by noise. Noise, caused by photon counting
(Poisson noise), by the readout of the detector (Gaussian)

and by the analog-to-digital conversion (uniform), disturbs
the image (Art, 1995). The performance of state-of-the-art
detectors is limited by photon counting noise (Art, 1995).
Furthermore, it is common in fluorescence microscopy to
measure a nonzero background level, arising from auto-
fluorescence, inadequate removal of fluorescent staining
material, offset levels of the detector gain or other electronic
sources. We model the noise distortion and background
here in a general form:

mðxÞ ¼ NðgðxÞ þ bðxÞÞ ð2Þ

with mðxÞ being the recorded image, bðxÞ the background
and Nð·Þ the noise distortion function.

2.2. Restoration methods

Generally, restoration methods yield an estimate of the
original image f̂ ðxÞ given an imaging model, a noise model
and additional criteria. These criteria depend on the
imposed regularization and constraints implied on
the solution found by the restoration algorithm. Although
the methods we investigate in this paper share the imaging
model they differ significantly owing to the different
modelling of noise distortion on the image, imposed
constraints and regularization.

The Richardson–Lucy algorithm computes the maximum
likelihood estimator of the intensity of a translated Poisson
process (Snyder & Miller, 1991). In case of additive Gaussian
noise, the maximum likelihood criterion results in minimiz-
ing a mean-square-error criterion. Both the ICTM and the
Carrington algorithm are constrained, regularized mean-
square-error restoration methods for finding a non-negative
solution for images distorted by additive noise. However,
they differ in the way the non-negativity constraint is
incorporated in the algorithms.

Poisson noise: the Richardson–Lucy algorithm. A confocal
microscope acquires an image of an object by scanning the
object in three dimensions. At each point of the image, the
emitted fluorescence light from the object is focused on the
detector. (This light is converted by a photomultiplier tube
(PMT) into an electrical signal, and represented by a discrete
value after an A/D conversion (Pawley, 1990).) Under low
light-level conditions, the PMT detector behaves essentially
as a photon counter. This conversion of fluorescence
intensity to a discrete number of detected photons is
described statistically as a Poisson process. Under these
conditions, the image formation of a confocal microscope is
described as a translated Poisson process (Snyder & Miller,
1991). A translated Poisson process models the measured
data acquired from an underlying, unobservable Poisson
process when the measurements are imperfect and in the
form of a Poisson process. This process transforms a Poisson
FðxÞ with an intensity function f ðxÞ (representing the ‘true’
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object) into a Poisson process mðxÞ subject to a conditional
probability density function, which is in our case equal to
the PSF hðxÞ. The log likelihood function of such a Poisson
process is given by (Snyder & Miller, 1991)

Lðf Þ ¼ ¹

�

X
gðxÞdx þ

�

X
ln½gðxÞ þ bðxÞÿmðxÞdx ð3Þ

where we have dropped all terms that are not dependent on
f ðxÞ and with

gðxÞ ¼

�

X
hðx ¹ xÞ f ðxÞdx: ð4Þ

The conditional expectation of a Poisson process FðxÞ given
the measured data mðxÞ is defined as

E½FðxÞjmÿ ¼

�

X

hðx ¹ xÞ

gðxÞ þ bðxÞ

� �

mðxÞdx: ð5Þ

The maximum likelihood estimator (MLE) f̂ ðxÞ for restoring
f ðxÞ given hðxÞ and mðxÞ can be found using the EM
algorithm, as described by Dempster et al. (1977). This
iterative algorithm was used first by Vardi et al. (1985) for
computing the MLE of the intensity of a Poisson process.
The EM algorithm requires two steps for each iteration, an
expectation (E) step and a maximization step (M). In the
expectation step, the conditional expectation Qð·Þ of the log
likelihood function of FðxÞ is determined:

LXðf Þ ¼ ¹

�

X
f ðxÞdx þ

�

X
ln½FðxÞÿ f ðxÞdx

given the measured data mðxÞ and the kth estimate f̂kðxÞ of
f ðxÞ,

Qðf ðxÞj f̂kðxÞÞ ¼

�

X
f ðxÞdx þ

�

X
E½FðxÞjmðxÞ; f̂ ðxÞÿ lnðf ðxÞÞdx:

ð6Þ

Using (5), we obtain

Qðf ðxÞj f̂kðxÞÞ ¼

�

X
f ðxÞdx þ

�

X

�

X

hðx ¹ xÞ

gðxÞ þ bðxÞ

� �

mðxÞdx

� �

lnðf ðxÞÞdx: ð7Þ

The M-step maximizes this function Qð·Þ over the set of
admissible f ðxÞ. Using ∂Q=∂f ðxÞ ¼ 0 for f ¼ f̂k þ 1 yields
(Snyder et al., 1993)

f̂k þ 1ðxÞ ¼ f̂kðxÞ

�

X

hðx ¹ xÞ
�

X hðx ¹ x0Þ f̂kðx0Þdx0 þ bðxÞ

" #

mðxÞdx: ð8Þ

The EM algorithm ensures a non-negative solution when a
non-negative initial guess f̂0ðxÞ is used. Furthermore, the
likelihood of each iteration of the EM algorithm will strictly
increase to a global maximum (Snyder & Miller, 1991). The
EM algorithm (8) is identical to the Richardson–Lucy
algorithm as derived by Richardson (1972). Although
accelerated and regularized versions of the Richardson–
Lucy algorithm exist (Holmes & Liu, 1991; Joshi & Miller,

1993), none of these algorithms incorporate the back-
ground term bðxÞ.

From previous experiments (van Kempen et al., 1996), we
observed that the Richardson–Lucy algorithm is very
sensitive to noise. We use a method that reduces this noise
sensitivity by suppressing those parts of the image spectrum
that do not contain any signal information (or where the
noise contribution is far larger than the signal contribu-
tion). These frequencies will prevent signal recovery and
only amplify noise in the final result. These (high-frequency)
parts of the spectrum can be suppressed by convolving the
recorded image with a Gaussian. We have compensated for
this smoothing of this convolution in the Richardson–Lucy
algorithm by convolving the PSF as well with the same
Gaussian.

Additive noise distortion: the ICTM and the Carrington
algorithm. Both the ICTM and the Carrington algorithms
are based on the assumption that the general noise
distortion function Nð·Þ can be modelled as an additive
noise function (Carrington, 1990, Lagendijk & Biemond,
1991):

m0ðxÞ ¼ mðxÞ ¹ bðxÞ ¼

�

X
hðx ¹ xÞf ðxÞdx þ n ð9Þ

with n the additive noise distortion with zero mean. For
images with a relatively high signal-to-noise ratio, the
additive noise model can be motivated by the central limit
theorem (Snyder & Miller, 1991): under these circum-
stances, the distribution of a Poisson process can be
approximated by a space variant Gaussian distribution.

Finding an estimate f̂ ðxÞ from (9) is known as an ill-posed
problem (Tikhonov & Arsenin, 1977). To solve this ill-
posedness, Tikhonov defined the regularized solution f̂ ðxÞ of
(9) as the one that minimizes the well-known Tikhonov
functional (Tikhonov & Arsenin, 1977):

Fðf Þ ¼






m0ðxÞ ¹

�

X
hðx ¹ xÞ f ðxÞdx






2

þ l






�

X
r ðx ¹ xÞ f ðxÞdx






2

ð10Þ

with l the regularization parameter and

k f ðxÞk2 ¼

�

X
j f ðxÞj2 dx:

The function r ðxÞ is known as the regularization filter. The
Tikhonov functional consists of a mean-square-error criter-
ion and a stabilizing energy bound. The functional suppresses
solutions of f̂ ðxÞ that oscillate wildly due to spectral com-
ponents outside the bandwidth of h. Minimization of (10)
yields the well-known Tikhonov–Miller (TM) solution aðxÞ,

F̂ðqÞ ¼ AðqÞM0ðqÞ with AðxÞ ¼
H¬ðqÞ

kHðqÞk2 þ lkRðqÞk2

ð11Þ
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with * denoting the conjugate operator, and all capitals the
Fourier transform of the corresponding function. Although
this solution requires modest computational efforts, it is
very sensitive to errors in the estimation of the PSF, causing
ringing artefacts (van der Voort & Strasters, 1995).
Furthermore, the solution may contain negative values.
This property of the TM inversion is a major drawback,
since the intensity of an imaged object represents signal
energy which is positive. We have compared two iterative
algorithms, the ICTM and the Carrington algorithm, that
incorporate this non-negativity constraint in solving (10).

The ICTM algorithm. The ICTM algorithm finds the
minimum of (10) by using conjugate gradients. The so-
called conjugate gradient direction of (10) is given by

pkðxÞ ¼ rkðxÞ þ gkpk ¹ 1ðxÞ; gk ¼
krkðxÞk2

krk ¹ 1ðxÞk2 ð12Þ

with rkðxÞ denoting the steepest descent direction,

rkðxÞ ¼ ¹ 1
2 =f̂ Fð f̂ ðxÞÞ ¼

�

X
hðx ¹ xÞðm0ðxÞ ¹ gðxÞÞdx ¹ lf̂ ðxÞ

with gðxÞ defined by (4). A new conjugate gradient estimate
is now found with

f̂k þ 1ðxÞ ¼ f̂ ðxÞ þ bkpkðxÞ: ð13Þ

In the absence of a non-negativity constraint, the optimal
step size bk can be calculated analytically. However, in the
presence of such a constraint, the optimal bk must be
searched for iteratively. In our implementation, a golden
section rule line-search (Press et al., 1992) is employed to
find bk. The ICTM algorithm, therefore, consists of a main
iterative loop in which the conjugate directions are
computed, and a subiterative loop in which bk is optimized.
The latter requires one blurring operation per subiteration.

The Carrington algorithm. Given the Tikhonov functional
(10) (without the regularization operator) and its derivative,

1
2 =f Fð f ðxÞÞ ¼

�

X
hðx ¹ xÞðgðxÞ ¹ m0ðxÞÞdx þ lf ðxÞ;

we want to find the non-negative value of f̂ ðxÞ that
minimizes this functional. Then the Kuhn–Tucker condi-
tions should apply (Carrington, 1990):

=f F ¼ 0 and f > 0 or =f F $ 0 and f ¼ 0: ð14Þ

Then from (14) the Kuhn–Tucker conditions follow:

f̂ ðxÞ ¼

�

X
hðx ¹ xÞc ðxÞdx if

�

X
hðx ¹ xÞc ðxÞdx > 0

ð15Þ
and

f̂ ðxÞ ¼ 0 if
�

X
hðx ¹ xÞc ðxÞdx # 0 ð16Þ

where

c ðxÞ ¼
1
l

m0ðxÞ ¹

�

X
hðx ¹ xÞ f ðxÞdx

� �

¼
1
l

ðm0ðxÞ ¹ gðxÞÞ:

From (15) and (16) now follows

f̂ ðxÞ ¼ max 0;
�

X
hðx ¹ xÞc ðxÞdx

� �

: ð17Þ

On the domain Xþ where the values
�

X hðx ¹ xÞc ðxÞdx > 0
we then obtain, after insertion into (10), that

�

X
hðx ¹ xÞ

�

Xþ

hðx0 ¹ xÞc ðx0Þdx0

� �

dx ¹ m0ðxÞ þ lcðxÞ ¼ 0

ð18Þ

where we have assumed that hð·Þ is non-negative. This is
equivalent to minimizing the functional Wð·Þ,

WðcÞ ¼ 1
2






�

Xþ

hðx ¹ xÞc ðxÞdx






2

¹

�

X
c ðxÞm0ðxÞdx þ 1

2lkcðxÞk2
: ð19Þ

WðcÞ is strictly convex and twice continuously differentiable.
A conjugate gradient algorithm, similar to (12) and (13),
can be used to minimize (19). In this case bk can be found
using Newton’s rule. No blurring operations are necessary
for the subiterations, resulting in a much faster line-search
than in the case of ICTM.

2.3. Performance measures

In previous work (van Kempen et al., 1996) we have used
the mean-square-error (MSE) and the I-divergence as
performance measures. The MSE is given as

MSEðf ; f̂ Þ ¼

�

X
j f ðxÞ ¹ f̂ ðxÞj2 dx: ð20Þ

The mean-square-error measures the difference in energy
between the two compared signals. Csiszár (1991) has
introduced the I-divergence,

Iða; bÞ ¼ a ln
a
b

h i

¹ ða ¹ bÞ;

to measure the distance of a function b to a function a. He
has postulated a set of axioms of regularity (consistency,
distinctness and continuity) and locality that a distance
measure should possess. He concluded that for functions
that are required to be non-negative, the I-divergence is the
only consistent distance measure. For real-valued functions,
having both negative and positive values, the MSE is the
only consistent choice. Snyder et al. (1992) have shown that
maximizing the mean of the log likelihood of (3) is equal to
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minimizing Csiszár’s I-divergence,

Iðf ; f̂ Þ ¼ Lðf Þ ¹ E½Lðf̂ Þÿ ¼

�

X
ln

gðxÞ

ĝðxÞ

� �

gðxÞ ¹ gðxÞ þ ĝðxÞ

� �

dx:

ð21Þ

Although the investigated image restoration algorithms
minimize the MSE or I-divergence measure, these measures
are not conclusive when the goal of image restoration is to
improve the quantitative analysis of microscopic images.
Therefore, we also examined the performance of these
measured with an analysis-based performance measure.

The total amount of fluorescence inside a closed object is
in many applications a useful measurement. It could for
example represent the total amount of DNA inside a cell
nucleus. Image blur, however, does not permit this
measurement when objects lie close together. In this
situation, image restoration algorithms can be applied,
prior to the measurement, to reduce this blur. A useful
performance measure is how the intensities are being
reshuffled without mixing intensities that came from
different objects. We have implemented this performance
measure by assigning the intensity of a pixel to the object
with the shortest distance from the pixel to the object’s
surface.

3. Experiments and results

We have performed two simulation experiments. The first
experiment tests the performance of the Richardson–Lucy,
ICTM and Carrington algorithms on restoring a sphere that
is convolved with a confocal PSF and distorted with Poisson
noise. The performance of the algorithms is measured with
the MSE with I-divergence as a function of the signal-to-
noise ratio, which is defined in this section. The second
experiment tests the ability of the three algorithms to
improve the quantitative measurement of the total amount
of fluorescence inside one sphere in the vicinity of a second
sphere.

3.1. Object and noise generation

We generated the spheres using an analytical description of
their Fourier transform, as given by van Vliet (1993) in
spherical coordinates u; v;w;

Ssphere
u
r
; v;w

� �

¼
¹6pu cosð2puÞ þ 3 sinð2puÞ

8p3u3 ð22Þ

with r the radius of the sphere. The Fourier transform of the
sphere is multiplied by a Gaussian transfer function (sigma
of 1 pixel in the spatial domain) to ensure bandlimitation.
Generated in this way, the spheres are free from aliasing
effects that arise from sampling non-bandlimited analytical
objects below the Nyquist rate.

We computed the confocal point spread function from a

theoretical model of the confocal image formation, based
on electromagnetic diffraction theory (van der Voort &
Brakenhoff, 1990). This model takes important micro-
scopical parameters, such as the finite-size pinhole, high
apertures and polarization effects into account; lens
aberrations are not modelled.

The performance of the restoration algorithms is
measured as a function of the signal-to-noise ratio (SNR),
which we define as

SNR ¼
E
e

ð23Þ

with e the total power of the noise and E the total power of
the object. The simulated images are distorted by Poisson
noise. The noise is generated by using the intensity of the
convolved spheres as averages of a spatially variant Poisson
process (Press et al., 1992). We have varied the signal-to-
noise ratio of the simulated images by changing the photon-
conversion efficiency. For a Poisson process, the variance j2

equals the mean, so the noise power in the image is equal to

e ¼ j2 ¼ c¹1ð4
3 pr3I0 þ VIbÞ ð24Þ

with c the photon-conversion efficiency (photons/ADU), V
the image volume (mm3), I0 the average sphere intensity
(ADU) and Ib the average intensity of the background
(ADU), and r radius of the sphere (mm). Using (23) and (24)
the photon-conversion can now be found with

c ¼
SNR · ð4

3 pr3I0 þ VIbÞ

4
3 pr3I2

0

: ð25Þ

For our simulations, we have selected microscope par-
ameters corresponding to typical working conditions: a
numerical aperture of 1.3, a refractive index of the lens
immersion oil of 1.515, an excitation wavelength of
479 nm, an excitation/emission ratio of 0.9 and a pinhole
size of 282 nm. These conditions result in a lateral sampling
distance of 46.0 nm and an axial sampling distance of
162.4 nm, when the images are sampled at the Nyquist
frequency.

3.2. Iterative optimization: where to start and when to stop

All three investigated restoration algorithms need a first
guess to start their iterations. We have used the measured
image m as a first estimate f̂0 to start the Richardson–Lucy
and ICTM algorithms. To start the Carrington algorithm we
have set c0 to zero, as proposed by Carrington (1990).

In principle, one can continue to generate new estimates
of f̂ until the optimum of functional is found by the
restoration algorithm. In practice, this procedure is
undesirable. Experiments (Holmes & Liu, 1991) show that
the likelihood of a Richardson–Lucy estimate increases
logarithmically as a function of the number of iterations.
This growth makes the search for the maximum of the
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likelihood function extremely computationally expensive.
We have therefore used a threshold (we have chosen
0.001%) on the change of the functional ðð fk þ 1 ¹ fkÞ=fkÞ to
stop the iteration. This criterion can be seen as a speed-of-
convergence criterion, since it is a threshold on the slope of
the change of the functional as function of the number of
iterations. The functionals of the methods considered have
been shown to converge as an exponential function of the
number of iterations to their optimum (Holmes & Lui, 1991;
Lagendijk & Biemond, 1991). Therefore, the threshold
determines how near to the optimum the algorithms are
stopped.

3.3. Estimation of the regularization parameter

The Tikhonov functional (10) shows that the restoration
results will be smoother for higher values of the regulariza-
tion parameter l (more regularization). Lower values of l

will result in ‘crisper’ results that are, in general, more
sensitive to the noise in the image. Previous work (van
Kempen et al., 1996) showed that when the regularization
parameter l equals 1=SNR, the result of the ICTM algorithm
is too smooth. It is therefore of great importance to have a
reliable method for determining the l parameter used in
the ICTM and Carrington algorithms. In Galatsanos &
Katsaggelos (1992) the methods of constrained least-
squares, generalized cross-validation and maximum likeli-
hood are described to determine l for the closed formed
Tikhonov–Miller solution (11). In this paper, we compare
these three methods of determining l with l equal to 1=SNR
for the ICTM and Carrington algorithms.

The method of constrained least-squares (CLS) finds a
lCLS such that the following equation holds:

kMðqÞ ¹ HðqÞF̂ðqÞk2 ¼ kMðqÞ ¹ HðqÞAðqÞGðqÞk2 ¼ e

ð26Þ

with e the total noise power and AðqÞ given in (11). As the
total noise power e is determined by the variance of the
noise, this method requires knowledge of the noise variance.
The method of generalized cross-validation (GCV) can be
derived from the leave one out principle, and can be
expressed in the discrete Fourier domain as (Galatsanos &
Katsaggelos, 1992)

GCVðlÞ ¼

X

Q

l2jRðqÞj4jMðqÞj2

ðjHðqÞj2 þ ljRðqÞj2Þ2

X

Q

ljRðqÞj2

jHðqÞj2 þ ljRðqÞj2

 !2 ð27Þ

with lGCV the value of l that minimizes (27). This
minimum can be found without prior knowledge of the
noise variance (Reeves & Mersereau, 1992).

An alternative method to determine l without prior
knowledge of the noise variance has been named the

maximum likelihood method by Galatsanos & Katsaggelos
(1992). It is based on a stochastic approach, which assumes
�

X r ðx ¹ xÞ f ðxÞdx and the noise to be Gaussian distributed
(this can be achieved with a proper choice of the
regularization filter r ðxÞ, see Galatsanos & Katsaggelos
(1992)). The derived maximum likelihood function can be
evaluated in the discrete Fourier domain with (Galatsanos &
Katsaggelos (1992))

MLðlÞ ¼

X

Q

ljRðqÞj2jMðqÞj2

jHðqÞj2 þ ljRðqÞj2

Y

Q

ljRðqÞj2

jHðqÞj2 þ ljRðqÞj2

� �1=Q ð28Þ

with Q number of Fourier coefficients. In our experiments,
we have determined the value of the regularization
parameter, using one of these three methods, before starting
the ICTM and the Carrington algorithm.

3.4. Restoration of spheres

This experiment compares the capability of the Richardson–
Lucy, the ICTM and the Carrington algorithm to restore
spheres convolved with a confocal PSF and distorted by
Poisson noise. The performance of the algorithms is
measured with the MSE and I-divergence measure as a
function of the SNR. We have generated spheres with a
radius of 1.0 mm, an object intensity of 200.0 and a
background of 40.0. The images are 128 × 128 × 32 pixels
in size, the SNR ranges from 1.0 to 256.0 (0.0–24.2 dB).
Using (25) this corresponds to 9.5–2435 photons per voxel
in the object and 1.9–487 photons per voxel in the
background.

In Fig. 1, the value of the regularization parameter is
plotted as a function of the SNR as determined by 1=SNR, the
CLS, GCV or ML method.
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Fig. 1. The value of the regularization parameter as a function of
the signal-to-noise ratio. The regularization parameter was deter-
mined by the CLS, GCV or ML method, or set at 1=SNR.
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Fig. 2. The value of the mean square error of the restoration result of the Carrington and ICTM algorithms. The regularization parameter was
determined with the CLS, GCV and ML method and by setting it to 1=SNR.

Fig. 3. The restoration results of the Carrington and ICTM algorithms with the regularization parameter determined by 1=SNR and with the
CLS, GCV and ML methods. The pictures show the centre x–y and x–z slices of an image (128 × 128 × 32 pixels in size) of a sphere with
radius 1.0 mm and a SNR of 16.0. The object and its confocal image are shown in Fig. 5. The images are displayed with eight-bit grey-
scale resolution, without stretching the intensities.
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Fig. 4. The I-divergence (left) and mean-square-error (right) performance of the ICTM algorithm and the Richardson–Lucy algorithm. ICTM’s
regularization parameter has been determined by the CLS and the GCV algorithm. The Richardson–Lucy algorithm is tested with and without
noise suppression by Gaussian prefiltering

Fig. 5. Restoration of spheres. From left to right we show the centre x–y and x–z slices of the object and its confocal image (left), the results of
Richardson–Lucy and filtered R-L (middle), and the results of the ICTM (CLS) and Carrington (GCV) algorithms. The images are
128 × 128 × 32 pixels in size, the radius of the sphere is 1.0 mm and SNR is 16.0. The images are displayed with eight-bit grey-scale resolu-
tion, without stretching the intensities. The background has been subtracted from the measured image, to ease the comparison with the
other images.
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Figure 2 shows that the results of the ICTM and
Carrington algorithms converge to the same solution in
the mean square error sense. Furthermore, it shows the
large influence of the regularization parameter on the
results. Large (1=SNR) as well as small values of l (ML
method) will result in poor restoration results. The
restoration results of the Carrington and ICTM algorithms
are shown in Fig. 3. The regularization parameter is
determined by 1=SNR, the CLS, GCV or ML methods. Figure
3 shows again the similarity of the Carrington and ICTM
results with l determined by the CLS or GCV method.
Furthermore, it shows that the ICTM result with l set to
1=SNR is too smooth, whereas the result with the ML
method shows noise adaptation caused by the small value of
the l, reducing the regularization.

Figure 4 shows the I-divergence and mean square error
performance of the ICTM algorithm and the Richardson–
Lucy algorithm. We have employed the CLS and GCV
methods for determining the regularization parameter of the
ICTM algorithm. We show the results of the Richardson–
Lucy algorithm with and without noise suppression by
Gaussian prefiltering (as described in Section 2). We have
used a Gaussian with a sigma of 1 pixel in the lateral
direction and of 2 pixels in the axial direction. The
Richardson–Lucy algorithm outperforms the ICTM algo-
rithm with respect to the I-divergence criterion, but the
ICTM algorithm performs better than Richardson–Lucy in
mean-square-error sense for low SNR. Figure 5 shows
centre x–y and x–z slices of the sphere, the confocal image
as well as the results of the four restoration algorithms.

Figure 6 shows the processing time and the number of
iterations needed by the Richardson–Lucy, filtered R-L,
Carrington and ICTM algorithms as a function of the SNR.
The l of the Carrington and ICTM algorithms is determined
by the GCV method. The processing time was measured on
a Sun UltraServer 1 computer, equipped with an UltraSparc
1 CPU running at 143 MHz and 160 MB main memory
(Sun Microsystems, Mountain View, CA).

This difference in execution time is explained by two
factors: the number of iterations and the number of Fourier
transforms per iteration. The Richardson–Lucy algorithm
needs about six times more iterations than the Carrington
algorithm before our stop criterion is met. The filtered
Richardson–Lucy algorithm needs about 25 times more
iterations; the ICTM algorithm needs on average 1.5 times
more iterations. Secondly, both the Richardson–Lucy and
the Carrington algorithm need four Fourier transforms per
iteration. The ICTM algorithm, on the other hand, needs
two Fourier transforms per iteration, and two transforms to
start an iterative search for bk, which needs another
transform per subiteration. Our implementation of the
ICTM needs about 4–6 iterations to determine bk. There-
fore, the ICTM algorithm needs, in total, 2–2.5 times more
Fourier transforms per iteration than the Carrington
algorithm. It should be noted that the number of iterations
of the Richardson–Lucy type algorithms could be reduced
considerably if an acceleration method as proposed by
Holmes & Liu (1991) is adapted to work properly in the
presence of background term bðxÞ.

3.5. Improvement of quantitative analysis

This experiment tests the ability of the Richardson–Lucy,
ICTM and Carrington algorithms to improve the quantita-
tive measurement of the total amount of fluorescence inside
one sphere in the vicinity of a second sphere as a function of
the distance between the spheres. We have generated one
sphere with a radius of 0.4 mm and an intensity of 200.0
and a second sphere with a radius of 0.6 mm and an
intensity of 50.0 (the background remained 40.0). A fixed
distance of 0.05 mm is used in the lateral direction and is
varied in the axial direction from 0.0 to 2.0 mm. We chose to
vary the axial distance as most of the blurring occurs in this
direction. The total amount of fluorescence inside the
spheres is measured before convolving it with the confocal
PSF, to obtain the ground truth, and before and after

Fig. 6. The processing time (left) and the number of iterations (right) needed by the Richardson–Lucy, filtered R-L, Carrington and ICTM
algorithms as a function of the SNR. The regularization parameter of the Carrington and ICTM algorithm is determined by the GCV method.
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restoration. As described in Section 2.3 we measured the
total amount of fluorescence inside a sphere by assigning
the intensity of a pixel to the sphere with the shortest
distance from the pixel to the sphere’s surface. In this
experiment we used a sample distance of 46.0 nm in both
the lateral and the axial direction. The images have a size of
64 × 64 × 128 pixels, and a SNR of 16.0 was used. Figure 7
shows the error of the total intensity measured before and
after restoration relative to the total intensity measured

before convolving the spheres with the confocal PSF. Two
spheres (with an axial distance of 0.2 mm) and their
confocal image are shown in Fig. 8 together with the
restoration results of the filtered Richardson–Lucy and the
ICTM algorithms (using the GCV method for determining l).

4. Discussion and conclusions

We have compared the performance of the Richardson–
Lucy, ICTM and Carrington restoration algorithms applied
to 3-D confocal test images. All algorithms greatly reduce
diffraction-induced distortions of these images. The reader
should be aware that we have generated ‘simple’ objects:
spheres with a constant intensity, which could make these
images more beneficial for imposed regularization than
images of more ‘complex’ objects. For example, texture or
cell cores, generally found in biological images, have not
been modelled. Furthermore, we have used a theoretical
model of the confocal PSF, which does not model lens
aberrations and refractive-index-induced diffraction, which
could influence the performance of the restoration methods
in practical situations.

From our experiments we have found that the differences
between the Carrington and ICTM algorithms are small in
the mean-square-error sense compared with the Richard-
son–Lucy algorithm, despite the different incorporation of
the non-negativity constraint in the two algorithms which
results in two different strategies to find the minimum of the
Tikhonov functional. We found that a small value of the
regularization parameter (determined by the ML method)
results in poor and different results for these two algorithms.
A proper value of the regularization parameter was found
by the constrained least-squares (CLS) method and the
method of generalized cross-validation (GCV). Setting the
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Fig. 8. Two spheres. From left to right we show the centre x–z slice of the object, image and of the restoration results of the filtered R-L and
ICTM algorithms. The axial distance between the two spheres is 0.2 mm.

Fig. 7. The relative error of the total intensity of one sphere as a
function of axial distance to a second sphere. The intensity is
measured before and after restoration with the filtered Richardson–
Lucy or the ICTM algorithm (using GCV or CLS to determine l).

IMAGE RESTOR ATION METHODS 363



regularization parameter equal to the theoretical value of
1=SNR, as we have done in a previous experiment (van
Kempen et al., 1996), results in a solution which is too
smooth. The CLS method for determining l needs prior
knowledge of the noise variance. In our simulations this
was easily derived from the SNR we specified. In practice,
however, this is not possible. The average noise variance can
then be estimated from the high-frequency band of the
image spectrum which is dominated by noise.

We have found that the results of the Richardson–Lucy
algorithm improve in I-divergence as well as mean-square-
error sense by prefiltering both the image and the PSF with
a small Gaussian. This Gaussian prefiltering will reduce
noise sensitivity by suppressing those parts of the image
spectrum that do not contain any signal information or
which are dominated by noise. A disadvantage of this
filtering is the large increase in the number of iterations
needed. However, we are currently investigating the
application of the acceleration method of Holmes & Liu
(1991) for the Richardson–Lucy algorithm that incorpo-
rates the background term bðxÞ.

The ICTM and Carrington algorithms perform better in
mean-square-error sense than the (improved) Richardson–
Lucy for images with a low signal-to-noise ratio (given a
proper choice of the regularization parameter). This can be
caused by the fact that the ICTM and Carrington algorithms
are designed to minimize the mean-square-error or by the
regularization they incorporate. However, it must be
stressed that, under low SNR conditions, the MSE criterion
is not an appropriate difference measure for images used
which were hampered by Poisson noise.

Although the investigated image restoration algorithms
minimize the MSE or I-divergence measure, these measures
are not conclusive when the goal of image restoration is to
improve the quantitative analysis of microscopic images. We
have shown that the measurement of the total amount of
fluorescence inside a sphere in the vicinity of another sphere
is greatly improved by applying image restoration prior to
the analysis. In this particular experiment, the filtered
Richardson–Lucy algorithm produces better results than
the ICTM algorithm.
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