Loading...
 

Neurosciences

Images processed with Huygens in the field of Neurosciences


This is an image of neurons growing in the tissue culture, acquired with spinning disk confocal and deconvloved with Huygens professional.

Dr. Pawel Pasierbek, Institute of Molecular Pathology, BioOptics (IMP, IMBA, GMI), Vienna, Austria.

Shown are two fluorescently-labelled neuronal proteins (red and green) differentially expressed in two neurons making ‘contacts’ to communicate with each other at the neurites (arms of the neuron).This Z-stack was captured on a Zeiss AxioImager and deconvolved and MIP rendered with Huygens Professional.

Dr. Annie Quan, Children's Medical Research Institute (CMRI), Sydney University, Australia.

A mouse neuron primary cultured cell was fixed and stained with a mouse alpha-tubulin antibody (conjugated to Alexa 568) and Alexa488-phalloidin (F-actin). Microscopy: Nikon A1 confocal (20x Plan Apo VC; NA 0.75) dry. Deconvolution was done with Huygens Essential.

Dr. Motosuke Tsutsumi, Nikon Imaging Center, Hokkaido University, Japan.

Primary hippocampal neuronal culture from P1 C56Bl/6H mice, grown on glass bottom dishes, imaged live in aqueous medium, expressing CMV-driven mCherry (red) and mouse diacylglycerol lipase (with pAcGFP, green) Images were recorded with 1,4 NA 60x oil immersion objective on a Nikon Ti-E inverted confocal microscope.

Dr. Barna Dudok MSc., Hungarian Academy of Sciences, Hungary.

Huygens stitched tiles of widefield (Leica) fluorescent Leica LIF data. The data is shown with Huygens automatic vignetting and shading correction. Image represents a developing mouse cortex (P30) stained for Tbr1 and reelin.

Dr. Kolk and Dr. Witteveen, Nijmegen Centre for Molecular Life Science, The Netherlands.

Inhibitory terminals on rat spinal cord neuron. Image shows a pattern of Glycine receptor (red), Gephyrin (blue) and GABA(A) receptor (green) immunolabeling in lumbar L3 segment. Sections were examined with confocal microscopy (Zeiss 780 using 40x obj.), and deconvolved with Huygens Professional.

Ms. Anna Maciejewska, Laboratory of Reinnervation Processes, Nencki Institute of Experimental Biology, Poland.

Image of DAPI (Red) and mab22C10 (Green) staining in larval brain of Drosophila melanogaster. The image was captured using Leica SP5II confocal microscope.

Dr. Anand Krishna Tiwari, Indian Institute of Advanced Studies, India.

The image shows a Drosophila thorax captured with a Zeiss 880 confocal microscope and deconvolved using Huygens Essential. Respiratory tracheal branches are labeled in various colors using stochastic expression of spaghetti monster GFP with defferent epitope tags.

Prof. Stefan Luschnig, WWU Muenster, Institute for Neurobiology, Germany.

SuperResolution Images of Actin Cytoskeleton of NPC Disease. Image is taken with Leica STED Microscope with %100 775 STED depletion laser power and shows the reduced binding of the IgG-opsonized beads on actin cytoskeleton of NPC macrophages (stained with Aberrior 635 - Phalloidin).

Mr. Gokhan Yilmaz, Pharmacology, University of Oxford, United Kingdom.

Image of multi-focal amyloid plaque in the brain of a prion-infected mouse. The plaque was visualized by staining with the amyloid-binding fluorescent dye Thioflavin S. Image acquired by widefield epi-fluorescence microscopy, deconvolved with Huygens.

Dr. Gerald Baron, DIR - Laboratory of Persistent Viral Diseases, NIAID-NIH, United States.

Huygens deconvolved and MIP rendered epifluorescence 3D data. Aquaporin 4 (red) shows individual astrocytic end-feet along a blood vessel in a mouse brain part. Thanks to deconvolution, GFAP (green) can be colocalized with AQ4 in small areas, but end-feet and arms of astrocytes can be separately identified.

Matthew Mitschelen, Dep.of Geriatric Medicine, University of Oklahoma Health Sciences Center, United States.

Image of Drosophila brain taken with Zeiss Z1 Light Sheet microscope. The images was deconvolved and fused with the Huygens Software.

Dr. Denis Ressnikoff, University Claude Bernard, Lyon, France.