Yokogawa disk

The Yokogawa Electric Corporation devised a unique Nipkow disk system with another coaxial spinning disk containing an array of microlenses, which efficiently guides the laser beams into pinholes.

Akihiko Nakano; Spinning-disk Confocal Microscopy: A Cutting Edge Tool for Imaging of Membrane Traffic. Cell Struct. Funct., Vol. 27, 349-355 (2002) .


This page explains the principles of the microlens-enhanced Nipkow disk scanning technology.

Yokogawa disk in Huygens

A typical disk has a physical pinhole spacing of about 253 microns and pinhole radius of 25 microns (50 µm in diameter). While Yokogawa has different CSU heads on the market (CSU-10, CSU-22, CSU-X1, CSU-W1) the pinhole size and the design are basically the same.

If you want to process images made with a Nipkow Disk Microscope containing a Yokogawa disk in the Huygens Software, you must use the Back Projected values, not the physical ones directly. The necessary values are the physical ones divided by the total magnification. In the following tables you can find the values for some typical Yokogawa magnifications. Below these tables you will find the calculation aid for all other Spinning Disc systems:

Yokogawa disk (CSU-10, CSU-22, CSU-X1)

Magnification Back Projected Pinhole Radius Back Projected Pinhole Distance
100× 250 nm 2.53 µm
60× 416.7 nm 4.22 µm
40× 625 nm 6.33 µm
20× 1250 nm 12.7 µm
10× 2500 nm 25.3 µm

Yokogawa disk (CSU-W1)

Magnification Back Projected Pinhole Radius Back Projected Pinhole Distance
100× 250 nm 5 µm
60× 416.7 nm 8.33 µm
40× 625 nm 15 µm
20× 1250 nm 30 µm
10× 2500 nm 50 µm

For all other cases the values can be confirmed for any magnification by simply stopping the disk and imaging the illumination pattern without any sample, as in the following image, measuring distances there, and dividing them by the total magnification of the system, so also including the internal magfnification which must be added to the magnification of the objective.

Image of a stopped CSU 22 confocal spinning disk recorded with a 60× - 1.42 NA objective, acquired by Dr. Paula Sampaio, Advanced Light Microscopy Facility, University of Porto. Pixel size 138.5 nm.

See Pinhole Distance and Difficulties Calculating The Pinhole for more details.

Upcoming Events

Thu 20 of Sep, 2018 16:51 CEST
Huygens Imaging Course in September 2018
Thu 27 of Sep, 2018
Huygens Workshop at NKI
Mon 12 of Nov, 2018
Huygens HRM Hackaton 2018

Contact Information

Scientific Volume Imaging B.V.

Laapersveld 63
1213 VB Hilversum
The Netherlands

Phone: +31 (0)35 64216 26
Fax: +31 (0)35 683 7971
E-mail: info at svi.nl

Image Image Image Image Image Image