Huygens Fuser

Align your multiview Light Sheet images using interactive scenes and real-time visual feedback

Common in Light Sheet Fluorescence Microscopy (LSFM) is the acquisition of multiple (opposing or rotational) views and to fuse these to compensate for light absorption and scattering issues. Typically, interest points (e.g. beads) are used to facilitate this fusion process. Huygens Fuser does not require the use of beads. Instead, each view can be optimally positioned using the interactive scene, and is optimally aligned by advanced correlation algorithms. Real-time visual feedback during the alignment process gives you full control over the fusion!

Huygens versatile Fuser is extremely easy to use and suited for all LSFM data with its additional expert fusion settings, tailored deconvolution for all light sheet types, and CPU + GPU support for efficient computational usage.

Fuser Ioannis
Multiview 3D light sheet data fused, deconvolved and visualized with Huygens, shows Arabidopsis thaliana mature anther with pollen grains stained with Alexander's protocol. Data was acquired with an Olympus/PhaseView Alpha3. Scale bar: 30 m - colors indicate depth. Courtesy: Ioannis Alexopoulos (GI), Ivo Rieu, Mieke Wolters, Jian Xu (Molecular Plant Physiology), Radboud University, The Netherlands.

Interactive views

Screenshot From 2019 10 03 16 46 10
Optimal interactive positioning of each view and direct visual feedback makes fusion easy, efficient, and fast.

Expert settings

Specific deconvolution (see picture) and fusion settings for various light sheet setups with extensive help information allow optimal image restoration.

Deconvolution Included

Huygens unique Light Sheet variable PSF modeling ensures high-quality LSFM deconvolution.


I tested the lightsheet fusion with 8-view lightsheet stacks of a drosophila ovary. The fusion worked great! What was especially useful was that it did the registration and fusion without fiducial marker beads in the images.

Dr. Benjamin Lopez (NRI-MCDB Microscopy Facility Director, University of California Santa Barbara, USA.

Fusion of various LSFM data

Stripes and shading problems are well-known imaging issues in light sheet microscopy. To minimize these, the sample is typically rotated and imaged from different directions. These different views then need to be fused into one single superior image to have all parts of the specimen imaged optimally. Huygens FUSER is extremely versitale as it helps you with the alignment and fusion of multiview 2D-5D (incl. multi-channel and time) images, which can be aquired with any type of Light Sheet microscope and from any imaging direction.

Image description:
Two examples of Zeiss Z1 Light Sheet datasets deconvolved and fused with the Huygens FUSER. The first dataset is from a Drosophila brain acquired at 360 degrees rotation (45 degrees steps), and the second set is from a chicken embryo imaged from two opposing sides. Courtesy of Prof. Christophe Marcelle, Mrs. Marie Julie Dejardin (INMG) & Dr. Denis Ressnikoff (CIQLE), Université Lyon 1, France.

Screenshot From 2019 10 10 17 04 08

Interactive views

Screenshot From 2019 10 03 16 46 10

Huygens FUSER main window shows on the left previews of each image as maximum intensity projections along the selected axis of rotation. Selected views for fusion are displayed in different customizable colors, and each view can be activated, manually placed, and aligned on top of the others within the center scene by simply using the mouse cursor. After initial setting of the angles and approximate relative shifts, Huygens FUSER fine-tunes the alignment of each view. The FUSER permits full control over the alignment by providing real-time visual feedback during the fusion process. Expert crop, fusion, and sampling settings with detailed explanations are available to cover a broad range of needs, like getting a fused image fast at rough voxel grid size using limited computational resouces, or obtaining at higher computational costs the finest voxel grid size and highest possible resolution.

Image description:
The Huygens Fuser Window showing multiple views as maximum intensity projections which can be manually aligned before the actual fusion process fine-tunes the alignment. Courtesy of Dr. Denis Ressnikoff from the University Claude Bernard Lyon 1, France.

Light Sheet Deconvolution & Fusion in Huygens

Similar to our previous Huygens Fusion & Deconvolution Wizard, the new Huygens FUSER has the option to deconvolve and fuse Light Sheet images within one single workflow. Several different light sheet setups are supported which include gaussian, high fill factor, scanning and lattice-based systems. By selecting parameter templates customized for your specific LSFM system, both the deconvolution with a light sheet variable PSF and the fusion are easily and reproducibly executed. Huygens unique set of additional restoration options even allow you to correct for additional imaging artefacts like hot&cold pixels, crosstalk (bleedthrough), chromatic aberration, and drift.

Video description
Maximum Intensity Projection of a raw (left) and deconvolved (right) 3D image from mouse blastocysts acquired with a Leica Digital Light Sheet microscope. Deconvolution was performed with the CMLE algorithm and the new Huygens module for calculating the theoretical Light Sheet point-spread-function. Courtesy of Dr. Marc Duque Ramirez and Dr. Ritsuya Niwayama (Hiiragi group) and Dr. Stefan Terjung (ALMF) from the EMBL Heidelberg, Germany.

Available for Huygens Essential & Professional

Huygens Fuser can be tested with a free test license. The product is commercially available as a licensed option for Huygens Essential, Professional.

Why wait? Try out this option by downloading Huygens and request a test license, or receive pricing information.

Pricing Info Request trial